4.6 Article

Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation

Journal

INTERNATIONAL JOURNAL OF CLIMATOLOGY
Volume 33, Issue 7, Pages 1805-1817

Publisher

WILEY
DOI: 10.1002/joc.3551

Keywords

daily rainfall; observation products; uncertainties; higher order statistics; regional climate model evaluation

Ask authors/readers for more resources

We intercompare three gridded observed daily rainfall datasets over Africa (FEWS (Famine Early Warning System), GPCP (Global Precipitation Climatology Project) and TRMM (Tropical Rainfall Measuring Mission)) in order to assess uncertainties in observation products towards the evaluation of the performance of a Regional Climate Model (RegCM3) in simulating daily precipitation characteristics over a domain encompassing the whole African continent. We find that different observation products exhibit substantial systematic differences in mean rainfall, but especially in higher order daily precipitation statistics, such as frequency of wet days, precipitation intensity and extremes as well as maximum length of wet and dry spells. For example, FEWS shows mostly higher frequency and lower intensity events than TRMM and GPCP. Thus, the different datasets provide quite different representations of daily precipitation behavior. As a result, although RegCM3 captures pretty well the monsoon rainband evolution and exhibits a representation of daily precipitation statistics within the range of the observations, it performs differently with respect to the various products. For instance, it simulates more intense but less frequent events over East and Southern Africa than in FEWS and vice versa compared to TRMM. We thus highlight the uncertainty in observations as a key factor preventing a rigorous and unambiguous evaluation of climate models over Africa. Improving the quality and consistency of observation products is thus paramount for a better understanding of the response of African climate to global warming. Copyright (c) 2012 Royal Meteorological Society

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available