4.6 Article

Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model

Journal

INTERNATIONAL JOURNAL OF CLIMATOLOGY
Volume 31, Issue 6, Pages 832-846

Publisher

WILEY
DOI: 10.1002/joc.2124

Keywords

Tibetan Plateau; precipitation; teleconnection; ECHAM5/MPI-OM; standardized precipitation index; drought; wetness

Funding

  1. Deutsche Forschungsgemeinschaft [FR 450/7, FR 450/14-2, SFB 512]

Ask authors/readers for more resources

Extratropical and tropical influences on Tibetan Plateau severe and extreme dry and wet summer months are investigated focussing on the large-scale circulation and using results of the coupled climate model ECHAM5/MPI-OM. A pre-industrial control run and scenario runs for the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) are considered. Tibetan Plateau precipitation in months of wetness and drought is related to atmospheric circulation anomalies in the North-Atlantic/European sector and to sea surface temperature anomalies in the Tropics. Drought on the Tibetan Plateau is associated with a pronounced wave train bridging Eurasia from the North Atlantic to Asia. Increased transient eddy activity in the North Atlantic storm track has a more south-west to north-east orientation. This supports a high pressure anomaly over the eastern North Atlantic and Scandinavia which excites a cross Eurasian wave train reducing the moisture inflow to the Tibetan Plateau from the Arabian Sea. A concurrent warming in the tropical Indian Ocean increases the low level monsoonal westerlies deviating the moisture transport from the Bay of Bengal towards the Indochinese Peninsula and the Philippines. Wetness on the Tibetan Plateau is dominated by a cooling in the tropical oceans, whereas atmospheric flow is predominantly zonal in the extratropics of North America and Europe. Thus, moisture inflow can reach the Tibetan Plateau via the Arabian Sea, the Bay of Bengal and the mid-latitude westerlies. Future scenarios show little change of atmospheric flow composites for wetness and dryness; the Tibetan Plateau droughts increase by 10% for an A1B-scenario, while extreme wet summer months are reduced by approximately 1%. Copyright (c) 2010 Royal Meteorological Society

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available