4.2 Article

Effect of Chemical Reaction on Maxwell Nanofluid Slip Flow over a Stretching Sheet

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/ijcre-2018-0065

Keywords

chemical reaction; radiation heat transfer; horizontal stretching sheet; maxwell nanofluid; porous medium

Funding

  1. University Grants Commission, New Delhi, INDIA [F. No-43-419/2014(SR)]

Ask authors/readers for more resources

The main focus of the present study is to analyze the effect of chemical reaction and nonlinear thermal radiation on Maxwell fluid suspended with nanoparticles through a porous medium along horizontal stretching sheet. The governing partial differential equations of the defined problem are reduced into a set of nonlinear ordinary differential equations using adequate similarity transformations. Obtained set of similarity equations are then solved with the help of efficient numerical method fourth fifth order Runge-Kutta-Fehlberg method. The effects of different flow pertinent parameters on the flow fields like velocity, temperature, and concentration are shown in the form of graphs and tables. The detailed analysis of the problem is carried out based on the plotted graphs and tables. It is observed that an increase in the radiation parameter, temperature ratio parameter, Brownian motion parameter and thermophoretic parameter lead to increase in the thermal boundary layer thickness but quite opposite phenomenon can be seen for the effect of Prandtl number.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available