4.3 Article

Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry

Journal

Publisher

SPRINGER
DOI: 10.1007/s10554-010-9778-x

Keywords

Blood flow; High-frequency ultrasound; Particle image velocimetry; Venous valve

Funding

  1. Creative Research Initiatives (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of the Ministry of Education, Science and Technology/National Research Foundation (MEST/NRF) of Korea
  2. National Research Foundation of Korea [2008-0061991] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

This study aims to investigate the blood flow around the perivalvular area in a human superficial vein using high-frequency ultrasound (HFUS) speckle image velocimetry. HFUS B-mode images were captured from the superficial veins of human lower extremity with a 35-MHz transducer. To measure the instantaneous velocity fields of blood flow, a cross-correlation particle image velocimetry (PIV) algorithm was applied to two B-mode images that were captured consecutively. The echo speckles of red blood cells (RBCs) were used as flow tracers. In the vicinity of the venous valve, the opening and closing motions of valve cusps were simultaneously visualized with the phasic variation of velocity fields. Large-scale vortices were observed behind the sinus pockets while the main bloodstream was directed proximally. This measurement technique combining PIV algorithm and HFUS B-mode imaging was found to be unique and useful for investigating the hemodynamic characteristics of blood flow in the perivalvular area and for diagnosing venous insufficiency and valve abnormality in superficial blood vessels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available