4.7 Article

Transforming growth factor-β induces CD44 cleavage that promotes migration of MDA-MB-435s cells through the up-regulation of membrane type 1-matrix metalloproteinase

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 124, Issue 11, Pages 2568-2576

Publisher

WILEY
DOI: 10.1002/ijc.24263

Keywords

breast cancer; CD44; membrane type 1-matrix metalloproteinase (MT1-MMP); TGF-beta; tumor cell migration

Categories

Funding

  1. The National Science Council, Taiwan [NSC 93-2320-B-010-079, NSC 94-2320-B-010-026, NSC 95-2314-b-075-063]
  2. Ministry of Education, Aim for the Top University Plan

Ask authors/readers for more resources

CD44, a transmembrane receptor for hyaluronic acid, is implicated in various adhesion-dependent cellular processes, including cell migration, tumor cell metastasis and invasion. Recent studies demonstrated that CD44 expressed in cancer cells can be proteolytically cleaved at the ectodomain by membrane type I-matrix metalloproteinase (MT1-MMP) to form soluble CD44 and that CD44 cleavage plays a critical role in cancer cell migration. Here, we show that transforming growth factor-beta (TGF-beta), a multifunctional cytokine involved in cell proliferation, differentiation, migration and pathological processes, induces MT1-MMP expression in MDA-MB-435s cells. TGF-beta-induced MT1-MMP expression was blocked by the specific extracellular regulated kinase-1/2 (ERK1/2) inhibitor PD98059 and the specific phosphoinositide 3-OH kinase (PI3K) inhibitor LY294002. In addition, treatment with SP600125, an inhibitor for c-Jun NH2-terminal kinase (JNK), resulted in a significant inhibition of MT1-MMP production. These data suggest that ERK1/2, PI3K, and JNK likely play a role in TGF-beta-induced MT1-MMP expression. Interestingly, treatment of MDA-MB-435s cells with TGF-beta resulted in a colocalization of MT1-MMP and CD44 in the cell membrane and in an increased level of soluble CD44. Using an electric cell-substrate impedance sensing cell-electrode system, we demonstrated that TGF-beta treatment promotes MDA-MB-435s cell migration, involving MT1-MMP-mediated CD44 cleavage. MT1-MMP siRNA transfection-inhibited TGF-beta-induced cancer cell transendothelial migration. Thus, this study contributes to our understanding of molecular mechanisms that play a critical role in tumor cell invasion and metastasis. (C) 2009 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available