4.7 Article

Metastasis is promoted by a bioenergetic switch: New targets for progressive renal cell cancer

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 122, Issue 11, Pages 2422-2428

Publisher

WILEY
DOI: 10.1002/ijc.23403

Keywords

renal cell carcinoma; transketolase-like-1 enzyme; glucose-6-phosphate-dehydrogenase; Warburg effect; pentose phosphate pathway

Categories

Ask authors/readers for more resources

Targeted therapies have demonstrated clinical benefit with limited impact on long-term disease specific survival in the treatment of renal cell cancer (RCC). New opportunities for the treatment of tumors that are resistant or have relapsed, are needed. Increased anaerobic glucose fermentation to lactate (aerobic glycolysis), leading to oxygen- and mitochondria-independent ATP generation is a hallmark of aggressive cancer growth. This metabolic shift results in increased lactate production via cycling through the pentose phosphate pathway (PPP), and plays an important role in tumor immune escape, progression and resistance to immune-, radiation- and chemo-therapy. This study explored the activity and impact of the oxidative and nonoxidative branches or the PPP on RCC to evaluate new therapeutic options. Activity was determined in the oxidative branch by glacose-6-phosphate-dehydrogenase (G6PD) activity, and in the nonoxidative branch by the total transketolase activity and the specific expression of the transketolase-like-1 (TKTL1) protein. Transketolase and G6PD activity were intensely elevated in tumor tissues. Transketolase, but not G6PD activity, was more elevated in metastasizing tumors and TKTL1 protein was significantly overexpressed in progressing tumors (p = 0.03). Lethal tumors, where surrogate parameters such as grading and staging had failed to predict progression, showed intensive TKTL1 protein expression. RCC was found to have activated oxidative and nonoxidative glucose metabolism through the PPP, displaying a bioenergetic shift toward nonoxiclative glucose fermentation in progressing tumors. The coexistence of cancer cells with differentially regulated energy supplies provides new insights in carcinogenesis and novel anticancer targets. (C) 2008 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available