4.7 Article

Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2010.07.009

Keywords

Interpenetrating polymer network; Hydrogel; Membrane; Transdermal; Controlled release; Drug delivery

Ask authors/readers for more resources

Interpenetrating network (IPN) hydrogel membranes of sodium alginate (SA) and poly(vinyl alcohol) (PVA) were prepared by solvent casting method for transdermal delivery of an anti-hypertensive drug, prazosin hydrochloride. The prepared membranes were thin, flexible and smooth. The X-ray diffraction studies indicated the amorphous dispersion of drug in the membranes. Differential scanning calorimetric analysis confirmed the IPN formation and suggests that the membrane stiffness increases with increased concentration of glutaraldehyde (GA) in the membranes. All the membranes were permeable to water vapors depending upon the extent of cross-linking. The in vitro drug release study was performed through excised rat abdominal skin; drug release depends on the concentrations of GA in membranes. The IPN membranes extended drug release up to 24 h, while SA and PVA membranes discharged the drug quickly. The primary skin irritation and skin histopathology study indicated that the prepared IPN membranes were less irritant and safe for skin application. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available