4.6 Article

Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells

Journal

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY
Volume 44, Issue 11, Pages 2019-2027

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2012.07.026

Keywords

Vitamin A; Retinoic acid; Liver lipid metabolism; Fatty acid oxidation; Fatty liver; Rxr

Funding

  1. Spanish Government (Ministerio de Educacion y Ciencia) [AGL2009-11277/ALI]
  2. 'Direccio General d'Universitats, Recerca i Transferencia del Coneixement' of Regional Government (CAIB)
  3. FEDER funds (EU)
  4. Government of the CAIB

Ask authors/readers for more resources

The vitamin A derivative retinoic acid (RA) is an important regulator of mammalian adiposity and lipid metabolism, primarily acting at the gene expression level through nuclear receptors of the RA receptor (RAR) and retinoid X receptor (RXR) subfamilies. Here, we studied cell-autonomous effects of RA on fatty acid metabolism, particularly fatty acid oxidation, in human hepatoma HepG2 cells. Exposure to all-trans RA (ATRA) up-regulated the expression of carnitine palmitoyl transferase-1 (CPT1-L) in HepG2 cells in a dose- and time-dependent manner, and increased cellular oxidation rate of exogenously added radiolabeled palmitate. The effect of ATRA on gene expression of CPT1-L was: dependent on ongoing transcription, reproduced by both 9-cis RA and a pan-RXR agonist (but not a pan-RAR agonist) and abolished following RXR alpha partial siRNA-mediated silencing. CPT1-L gene expression was synergistically induced in HepG2 cells simultaneously exposed to ATRA and a selective peroxisome proliferator-activated receptor alpha agonist. We conclude that ATRA treatment enhances fatty acid catabolism in hepatocytes through RXR-mediated mechanisms that likely involve the transactivation of the PPAR alpha:RXR heterodimer. Knowledge of agents and nutrient-derivatives capable of enhancing substrate oxidation systemically and specifically in liver, and their mechanisms of action, may contribute to new avenues of prevention and treatment of fatty liver, obesity and other metabolic syndrome-related disorders. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available