4.6 Article

Calreticulin is crucial for calcium homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

Journal

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY
Volume 43, Issue 8, Pages 1187-1197

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2011.04.012

Keywords

Calreticulin; Osmotic stress; ER stress protein; Proteomics; Renal epithelial cells

Ask authors/readers for more resources

The thick ascending limb of Henle's loop (TALH) is normally exposed to variable and often very high osmotic stress and involves different mechanisms to counteract this stress. ER resident calcium binding proteins especially calreticulin (CALR) play an important role in different stress balance mechanisms. To investigate the role of CALR in renal epithelial cells adaptation and survival under osmotic stress, two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry and functional proteomics were performed. CALR expression was significantly altered in TALH cells exposed to osmotic stress, whereas renal inner medullary collecting duct cells and interstitial cells exposed to hyperosmotic stress showed no significant changes in CALR expression. Moreover, a time dependent downregulation of CALR was accompanied with continuous change in the level of free intracellular calcium. Inhibition of the calcium release, through IP3R antagonist, prevented CALR expression alteration under hyperosmotic stress, whereas the cell viability was significantly impaired. Overexpression of wild type CALR in TALH cells resulted in significant decrease in cell viability under hyperosmotic stress. In contrast, the hyperosmotic stress did not have any effect on cells overexpressing the CALR mutant, lacking the calcium-binding domain. Silencing CALR with siRNA significantly improved the cell survival under osmotic stress conditions. Taken together, our data clearly highlight the crucial role of CALR and its calcium-binding role in TALH adaptation and survival under osmotic stress. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available