4.6 Article

Drosophila arf72A acts as an essential regulator of endoplasmic reticulum quality control and suppresses autosomal-dominant retinopathy

Journal

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY
Volume 43, Issue 9, Pages 1392-1401

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2011.06.004

Keywords

Drosophila arf72A small GTPase; ninaE(D1); ER quality control; ER-associated degradation (ERAD); Autosomal-dominant retinitis pigmentosa (ADRP)

Funding

  1. Ministry of Education, Science and Technology, the Republic of Korea [201031107.01, 2009-0093822, 2009K00129]

Ask authors/readers for more resources

The eukaryotic endoplasmic reticulum operates multiple quality control mechanisms to ensure that only properly folded proteins are exported to their final destinations via the secretory pathway and those that are not are destroyed via the degradation pathway. However, molecular mechanisms underlying such regulated exportation to these distinct routes are unknown. In this article, we report the role of Drosophila arf72A - the fly homologue of the mammalian Arl - in the quality checks of proteins and in the autosomal-dominant retinopathy. ARF72A localizes to the Golgi membranes of Drosophila photoreceptor cells, consistent with mammalian Arl1 localization in cell culture systems. A loss of arf72A function changes the membrane character of the endoplasmic reticulum and shifts the membrane balance between the endoplasmic reticulum and the Golgi complex toward the Golgi complex, resulting in over-proliferated Golgi complexes and accelerated protein secretion. Interestingly, our study indicated that more ARF72A localized on the endoplasmic reticulum in the ninaE(D1) photoreceptor cell, a Drosophila model of autosomal-dominant retinitis pigmentosa, compared to that in the wild-type. In addition, arf72A loss was shown to rescue the ninaE(D1)-related membrane accumulation and the rhodopsin maturation defect, and suppress ninaE(D1)-triggered retinal degeneration, indicating that rhodopsin accumulated in the endoplasmic reticulum bypasses the quality checks. While previous studies of ARF small GTPases have focused on their roles in vesicular budding and transport between the specific organelles, our findings establish an additional function of arf72A in the quality check machinery of the endoplasmic reticulum distinguishing the cargoes for secretion from those for degradation. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available