4.3 Article

Discrete Element Analysis of the Minimum Thickness of Oval Masonry Domes

Journal

INTERNATIONAL JOURNAL OF ARCHITECTURAL HERITAGE
Volume 10, Issue 4, Pages 457-475

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15583058.2014.996921

Keywords

3DEC; brick; distinct element; stone; structural stability

Funding

  1. OTKA (Hungarian Research Fund) [100770]

Ask authors/readers for more resources

This study focuses on domes the ground plan of which, instead of the more common circular shape, is an oval, and aims at finding the minimally necessary uniform wall thickness for domes of different geometries loaded by their selfweight. The discrete element code 3DEC was applied because of its capability of simulating the collapse mechanisms of masonry structures. Results on the minimal wall thickness, corresponding masonry volume and failure mechanisms for different dome geometries are presented. Three ranges of the friction coefficient were found. For very low frictional resistance collapse happens with pure frictional sliding, for any arbitrarily large wall thickness. In the range of relatively high (i.e., realistic) friction coefficients the structure collapses without any sliding if the wall is not sufficiently thick, and in the observed range of the friction coefficient the necessary wall thickness is nearly insensitive to its value (collapse initiates with hinging cracks only). Between the two domains an intermediate behavior was found: combined cracking and sliding collapse modes occur for insufficient wall thickness, and the minimal thickness strongly depends on the friction coefficient. The critical and transitional friction coefficients separating the failure modes were determined for different eccentricities of the groundplan.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available