4.7 Article

Estimating land-surface temperature under clouds using MSG/SEVIRI observations

Publisher

ELSEVIER
DOI: 10.1016/j.jag.2010.12.007

Keywords

Land-surface temperature (LST); LST under clouds; 4-Channel algorithm; Heliosat-2 algorithm; Temporal neighboring-pixel approach

Categories

Funding

  1. European Union
  2. National Natural Science Foundation of China [40971066]

Ask authors/readers for more resources

The retrieval of land-surface temperature (LST) from thermal infrared satellite sensor observations is known to suffer from cloud contamination. Hence few studies focus on LST retrieval under cloudy conditions. In this paper a temporal neighboring-pixel approach is presented that reconstructs the diurnal cycle of LST by exploiting the temporal domain offered by geo-stationary satellite observations (i.e. MSG/SEVIRD, and yields LST estimates even for overcast moments when satellite sensor can only record cloud-top temperatures. Contrasting to the neighboring pixel approach as presented by Jin and Dickinson (2002), our approach naturally satisfies all sorts of spatial homogeneity assumptions and is hence more suited for earth surfaces characterized by scattered land-use practices. Validation is performed against in situ measurements of infrared land-surface temperature obtained at two validation sites in Africa. Results vary and show a bias of -3.68 K and a RMSE of 5.55 K for the validation site in Kenya, while results obtained over the site in Burkina Faso are more encouraging with a bias of 0.37 K and RMSE of 5.11 K. Error analysis reveals that uncertainty of the estimation of cloudy sky LST is attributed to errors in estimation of the underlying clear sky LST, all-sky global radiation, and inaccuracies inherent to the 'neighboring pixel' scheme itself. An error propagation model applied for the proposed temporal neighboring-pixel approach reveals that the absolute error of the obtained cloudy sky LST is less than 1.5K in the best case scenario, and the uncertainty increases linearly with the absolute error of clear sky LST. Despite this uncertainty, the proposed method is practical for retrieving the LST under a cloudy sky condition, and it is promising to reconstruct diurnal LST cycles from geo-stationary satellite observations. (c) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available