4.5 Article

Sintered reaction-bonded silicon nitride with high thermal conductivity and high strength

Journal

Publisher

WILEY
DOI: 10.1111/j.1744-7402.2008.02187.x

Keywords

-

Ask authors/readers for more resources

Sintered reaction-bonded silicon nitride (SRBSN) materials were prepared from a high-purity Si powder doped with Y2O3 and MgO as sintering additives by nitriding at 1400 degrees C for 8 h and subsequently postsintering at 1900 degrees C for various times ranging from 3 to 24 h. Microstructures and phase compositions of the nitrided and the sintered compacts were characterized. The SRBSN materials sintered for 3, 6, 12, and 24 h had thermal conductivities of 100, 105, 117, and 133 W/m/K, and four-point bending strengths of 843, 736, 612, and 516 MPa, respectively. Simultaneously attaining thermal conductivity and bending strength at such a high level made the SRBSN materials superior over the high-thermal conductivity silicon nitride ceramics that were prepared by sintering of Si3N4 powder in our previous works. This study indicates that the SRBSN route is a promising way of fabricating silicon nitride materials with both high thermal conductivity and high strength.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available