4.6 Article

Cutting temperature, tool wear, and tool life in heat-pipe-assisted end-milling operations

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-014-5699-5

Keywords

Tool life; Heat-pipe-assisted cooling; Cutting temperature; Tool wear; Endmill

Funding

  1. EPA-STAR grant [RD833357]

Ask authors/readers for more resources

Machining of steel inherently generates high cutting temperature, which not only reduces tool life but also impairs the product quality. Conventional cutting fluids are ineffective in controlling the high cutting temperature and rapid tool wear, and also they deteriorate the working environment and, hence, cause the general environmental pollution. Heat-pipe-assisted cooling is an environmental friendly clean technology for desirable control of cutting temperature. Based on our previously related work, a combination of numerical analyses and experimental measurements in this paper is focused on the effects of heat-pipe-assisted cooling on cutting temperature, tool wear and tool life in end-milling operations at industrial speed-feed combination. Compared with dry milling and fluid cooling, the results indicate substantial benefit of heat-pipe-assisted cooling on cutting temperature, tool wear, and tool life. This may be mainly attributed to the fact that the heat-pipe cooling can alleviate the cutting temperature at the tool tip and especially the temperature differences between the cutting edge and the bulk of the insert by enhancing heat dissipation. Therefore, it is evident that end mills with embedded heat pipes are most feasible and effective in the actual end-milling operations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available