4.6 Article

Adaptive fuzzy sliding mode control for a robotic aircraft flexible tooling system

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-013-5123-6

Keywords

Synchronous motion control; Aircraft flexible tooling system; Dual robot; Fuzzy logic; AFSMC; Cross-coupling control

Funding

  1. Doctor Subject Foundation of the Ministry of Education of China [200800030005, 20110002110079]

Ask authors/readers for more resources

A robotic aircraft flexible tooling system is proposed in this paper, of which high-precision synchronous motion control of dual robots is a key part. In order to alleviate the effects of the mechanical coupling over synchronous and tracking errors of the two robots, a cross-coupling scheme based on an adaptive fuzzy sliding mode controller (AFSMC) is developed. First, the mechanical coupling model is established by dynamics analysis of the dual-robot driving system. Then, a novel cross-coupling error is proposed, which combines both the position and speed tracking and synchronous errors of dual robots. Moreover, the cross-coupling control scheme based on AFSMC is presented. For the proposed AFSMC, a fuzzy logic controller is adopted to generate the hitting control signal, and the output gain of the sliding mode control is tuned online by a supervisory fuzzy system. Finally, the preferable performance of the proposed AFSMC cross-coupling approach is verified by the simulation results compared with the conventional proportional-integral-derivative control and SMC cross-coupling controls.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available