4.6 Article

Failure mechanisms of a PCD tool in high-speed face milling of Ti-6Al-4V alloy

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-012-4622-1

Keywords

Tool wear; Titanium alloy; High-speed milling; Polycrystalline diamond (PCD) inserts

Funding

  1. National Basic Research Program of China [2009CB724402]
  2. National Natural Science Foundation of China [51175310]
  3. Graduate Innovation Foundation of Shandong University [yyx10012]

Ask authors/readers for more resources

High-speed milling tests were carried out on Ti-6Al-4V titanium alloy with a polycrystalline diamond (PCD) tool. Tool wear morphologies were observed and examined with a digital microscope. The main tool failure mechanisms were discussed and analyzed utilizing scanning electron microscope, and the element distribution of the failed tool surface was detected using energy dispersive spectroscopy. Results showed that tool flank wear rate increased with the increase in cutting speed. The PCD tool is suitable for machining of Ti-6Al-4V titanium alloy with a cutting speed around 250 m/min. The PCD tool exhibited relatively serious chipping and spalling at cutting speed higher than 375 m/min, within further increasing of the cutting speed the flank wear and breakage increased greatly as a result of the enhanced thermal-mechanical impacts. In addition, the PCD tool could hardly work at cutting speed of 1,000 m/min due to the catastrophic fracture of the cutting edge and intense flank wear. There was evidence of workpiece material adhesion on the tool rake face and flank face in very close proximity to the cutting edge rather than on the chipped or flaked surface, which thereby leads to the accelerating flank wear. The failure mechanisms of PCD tool in high-speed wet milling of Ti-6Al-4V titanium alloy were mainly premature breakage and synergistic interaction among adhesive wear and abrasive wear.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available