4.6 Article

Development of a real-time look-ahead interpolation methodology with spline-fitting technique for high-speed machining

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-009-2220-7

Keywords

Short line segments; Spline fitting; Look-ahead algorithm; High-speed machining

Ask authors/readers for more resources

Methodologies for converting short line segments into parametric curves were proposed in the past. However, most of the algorithms only consider the position continuity at the junctions of parametric curves. The discontinuity of the slope and curvature at the junctions of the parametric curve might cause feedrate fluctuation and velocity discontinuous. This paper proposes a look-ahead interpolation scheme for short line segments. The proposed interpolation method consists of two modules: spline-fitting and acceleration/deceleration (acc/dec) feedrate-planning modules. The spline-fitting module first looks ahead several short line segments and converts them into parametric curves. The continuities of the slope and curvature at each junctions of the spline curve are ensured. Then the acc/dec feedrate-planning module proposes a new algorithm to determine the feedrate at the junction of the fitting curve and unfitted short segments, and the corner feedrate within the fitting curve. The chord error and acceleration of the trajectory are bounded with the proposed algorithm. Simulations are performed to validate the tracking and contour accuracies of the proposed method. The computational efforts between the proposed algorithm and the non-uniform rational B-spline (NURBS)-fitting technique are compared to demonstrate the efficiency of the proposed method. Finally, experiments on a PC-based control system are conducted to demonstrate that the proposed interpolation method can achieve better accuracy and reduce machining time as compared to the approximation optimal feedrate interpolation algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available