4.5 Article

Increased expression of ABC transport proteins is associated with ivermectin resistance in the model nematode Caenorhabditis elegans

Journal

INTERNATIONAL JOURNAL FOR PARASITOLOGY
Volume 39, Issue 2, Pages 213-220

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijpara.2008.06.009

Keywords

Ivermectin; Caenorhabditis elegans; Drug resistance; Glutathione; ABC transporters; P-glycoprotein; Multidrug resistance-associated proteins (MRP)

Categories

Ask authors/readers for more resources

Widespread resistance to chemotherapeutic agents is one of the biggest challenges facing human health and the agricultural industry, with resistance to all current anthelmintics now recorded and few new agents or vaccines available. Understanding the development of drug resistance in parasitic nematodes is critical to prolonging the efficacy of current anthelmintics, developing markers for monitoring drug resistance and is beneficial in the design of new chemotherapeutic agents or tat-gets. This study describes the development of ivermectin-resistant strains of the model nematode Caenorhabditis elegans through step-wise exposure to increasing doses of ivermectin commencing with a non-toxic dose of I ng/ml. Resistant strains were developed that displayed a multidrug resistance phenotype with cross-resistance to the related drug moxidectin and to other anthelmintics, levamisole and pyrantel, but not albendazole. Resistance was associated with increased expression of the multidrug resistance proteins (MRPs) and P-glycoproteins. Resistance to ivermectin was reversible by the co-administration of MRP, P-glycoprotein and glutathione biosynthesis inhibitors, confirming the involvement of these proteins in resistance. In our model, resistance to low levels of ivermectin (<= 6 ng/ml) was associated with increased expression of mrp-1 and pgp-1 and decreased glutathione, while higher level resistance (10 ng/ml) was primarily associated with the increased expression of P-glycoproteins. Importantly, resistance was stable after 3 months without ivermectin treatment. This clearly demonstrates the involvement of transport proteins in ivermectin resistance and provides a model to understand drug resistance and its reversal. (c) 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available