4.6 Article

Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods

Journal

Publisher

WILEY-BLACKWELL
DOI: 10.1002/nme.4343

Keywords

explicit dynamics; mass lumping; embedded constraints; Nitsche; Lagrange multipliers; discontinuous Galerkin; X-FEM

Funding

  1. Air Force Office of Scientific Research
  2. Sandia National Laboratories

Ask authors/readers for more resources

We investigate various strategies to enforce the kinematics at an embedded interface for transient problems within the extended finite element method. In particular, we focus on explicit time integration of the semi-discrete equations of motion and extend both dual and primal variational frameworks for constraint enforcement to a transient regime. We reiterate the incompatibility of the dual formulation with purely explicit time integration and the severe restrictions placed by the CourantFriedrichsLevy condition on primal formulations. We propose an alternate, consistent formulation for the primal method and derive an estimate for the stabilization parameter, which is more amenable in an explicit dynamics framework. Importantly, the use of the new estimate circumvents the need for any tolerances as an interface approaches an element boundary. We also show that with interfacial constraints, existing mass lumping schemes can lead to prohibitively small critical time steps. Accordingly, we propose a mass lumping procedure, which provides a more favorable estimate. These techniques are then demonstrated on several benchmark numerical examples, where we compare and contrast the accuracy of the primal methods against the dual methods in enforcing the constraints. Copyright (c) 2012 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available