4.6 Article

Application of the X-FEM to the fracture of piezoelectric materials

Journal

Publisher

WILEY
DOI: 10.1002/nme.2455

Keywords

finite elements; extended finite element method; piezoelectric materials; convergence; crack

Ask authors/readers for more resources

This paper presents an application of the extended finite element method (X-FEM) to the analysis of fracture in piezoelectric materials. These materials are increasingly used in actuators and sensors. New applications can be found as constituents of smart composites for adaptive electromechanical structures. Under in service loading, phenomena of crack initiation and propagation may occur due to high electromechanical field concentrations. In the past few years, the X-FEM has been applied mostly to model cracks in structural materials. The present paper focuses at first on the definition of new enrichment functions suitable for cracks in piezoelectric structures. At second, generalized domain integrals are used for the determination of crack tip parameters. The approach is based on specific asymptotic crack tip Solutions, derived for piezoelectric materials. We present convergence results in the energy norm and for the stress intensity factors, in various settings. Copyright (C) 2008 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available