4.4 Article

Strategy for modeling flow diverters in cerebral aneurysms as a porous medium

Publisher

WILEY
DOI: 10.1002/cnm.2635

Keywords

aneurysm; CFD; flow diverter; modeling; porous medium

Funding

  1. Philips Healthcare

Ask authors/readers for more resources

Simulations using the patient-specific geometry of the aneurysm may help in a better planning of the treatment and in a consequent reduction of the associated risks. We propose, evaluate, and implement a methodology for the simulation of flow diverter (FD) devices in intracranial aneurysms by using a porous medium method (PMM), which greatly reduces the computational cost of these simulations compared with immersed method (IMM) approaches used to model complex FDs. The method relies on parameters from an empirical correlation derived from experimental observations in wire screens, consistent with CFD simulations. The verification of our PMM strategy was carried out by comparing the results of simulations in different (patient-specific) geometries and FDs, to those obtained under identical conditions by the IMM. Overall, both quantitative and qualitative results are consistent between IMM and PMM in cases where the local porosity remains roughly uniform throughout the neck, with differences in the reduction of the observables lower than 10%. This PMM strategy is up to 10 times faster than the IMM, which allows for a runtime of hours instead of days, bringing it closer for its application in the clinic. Copyright (c) 2014 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available