4.6 Article

Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

Journal

MEDICAL PHYSICS
Volume 42, Issue 5, Pages 2157-2168

Publisher

WILEY
DOI: 10.1118/1.4914863

Keywords

radiation therapy; treatment planning; intensity-modulated arc therapy; rotation therapy; beam angle optimization

Funding

  1. Cancer Research UK [19727] Funding Source: researchfish

Ask authors/readers for more resources

Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4 pi plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2 pi plan with 72 coplanar beam directions as pendant to the noncoplanar 4p plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2p plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable treatment plan quality. Conclusions: The authors' study reconfirms the dosimetric benefits of noncoplanar irradiation of nasopharyngeal tumors. Both SnS using optimized noncoplanar beam ensembles and VMAT using an optimized, arbitrary, noncoplanar trajectory enabled dose reductions in organs at risk compared to coplanar SnS and VMAT. Using great circles or simple couch rotations to implement noncoplanar VMAT, however, was not sufficient to yield meaningful improvements in treatment plan quality. The authors estimate that noncoplanar VMAT using arbitrary optimized irradiation trajectories comes at an increased delivery time compared to coplanar VMAT yet at a decreased delivery time compared to noncoplanar SnS IMRT. (C) 2015 American Association of Physicists in Medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available