4.6 Article

Three-dimensional inverse analyses of a deep excavation in Chicago clays

Publisher

WILEY
DOI: 10.1002/nag.949

Keywords

supported excavation; inverse analysis; soil behavior; three-dimensional simulation; neural network material models

Funding

  1. National Science Foundation [CMS 02-19123]

Ask authors/readers for more resources

Numerical models are commonly used to estimate excavation-induced ground movements. Two-dimensional (2D) plain strain assumption is typically used for the simulation of deep excavations which might not be suitable for excavations where three-dimensional (3D) effects dominate the ground response. This paper adapts an inverse analysis algorithm to learn soil behavior from field measurements using a 3D model representation of an excavation. The paper describes numerical issues related to this development including the generation of the 3D model mesh from laser scan images of the excavation. The inverse analysis to extract the soil behavior in 3D is presented. The model captures the measured wall deflections. Although settlements were not sufficiently measured, the predicted settlements around the excavation site reflected strong 3D effects and were consistent with empirical correlations. Copyright (C) 2010 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available