4.5 Article

Optimal oligonucleotide sequences for TLR9 inhibitory activity in human cells: lack of correlation with TLR9 binding

Journal

INTERNATIONAL IMMUNOLOGY
Volume 23, Issue 3, Pages 203-214

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/intimm/dxq473

Keywords

B cells; human; systemic lupus erythematosus; Toll-like receptors

Categories

Funding

  1. National Institute of Allergy and Infectious Diseases [R01AI0437374]
  2. NIH [AI-0437374]

Ask authors/readers for more resources

Toll-like receptor (TLR)9 performs our innate response to bacterial DNA, warning us of the presence of infection. Inhibitory oligodeoxyribonucleotides (INH-ODN) have been developed that selectively block activation of mouse TLR9. Their inhibitory motif consisting of CCx(not-C)(not-C)xxGGG (x = any base) also reduces anti-DNA antibodies in lupus mice. The current study demonstrates that this motif also provides the sequences required to block TLR9 in human B cells and human embryonic kidney (HEK) cells transfected with human TLR9. However, extending the sequence by four to five bases at the 5' end enhanced activity and this enhancement was greater when a phosphorothioate (pS) backbone replaced the native phosphodiester (pO) backbone. A series of pO-backbone INH-ODN representing a 500-fold range of activity in biologic assays was shown to cover less than a 2.5-fold range of avidity for binding human TLR9-Ig fusion protein, eliminating TLR9 ectodomain binding as the explanation for sequence-specific differences in biologic activity. With few exceptions, the relative activity of INH-ODN in Namalwa cells and HEK/human TLR9 cells was similar to that seen in mouse B cells. INH-ODN activity in human peripheral blood B cells correlated significantly with the cell line data. These results favor the conclusion that although the backbone determines strength of TLR9 binding, critical recognition of the INH-ODN sequence necessary for biologic activity is performed by a molecule that is not TLR9. These studies also identify the strongest INH-ODN for human B cells, helping to guide the selection of INH-ODN sequences for therapeutics in any situation where inflammation is enhanced by TLR9.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available