4.5 Article

Innate and adaptive immune control of genetically engineered live-attenuated arenavirus vaccine prototypes

Journal

INTERNATIONAL IMMUNOLOGY
Volume 22, Issue 9, Pages 749-756

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/intimm/dxq061

Keywords

arenavirus; Lassa fever; live attenuation; lymphocytic choriomeningitis virus; vaccine

Categories

Funding

  1. Swiss National Science Foundation [PP00A-114913, 3100A0-104067/1]
  2. Swiss Foundation
  3. Roche Research Foundation
  4. Boehringer Ingelheim Fonds
  5. European Molecular Biology Organization [ALTF48-2008]

Ask authors/readers for more resources

Arenaviruses such as Lassa virus (LASV) cause significant morbidity and mortality in endemic areas. Using a glycoprotein (GP) exchange strategy, we have recently developed live-attenuated arenavirus vaccine prototypes (rLCMV/VSVG) based on lymphocytic choriomeningitis virus (LCMV), a close relative of LASV. rLCMV/VSVG induced long-term CD8(+) T cell immunity against wild-type virus challenge and exhibited a stably attenuated phenotype in vivo. Here we elucidated the innate and adaptive immune requirements for the control of rLCMV/VSVG. Infection of RAG(-/-) mice resulted in persisting viral RNA in blood but not in overt viremia. The latter was only found in mice lacking both RAG and IFN type I receptor. Conversely, absence of IFN type II signaling or NK cells on an RAG-deficient background had only minor effects on vaccine virus load or none at all. rLCMV/VSVG infection of wild-type mice induced less type I IFN than did wild-type LCMV, and type I as well as type II IFNs were dispensable for the induction of virus-specific memory CD8 T cells and virus-neutralizing antibodies by rLCMV/VSVG. In conclusion, the adaptive immune systems are essential for elimination of rLCMV/VSVG, and type I but not type II IFN plays a major contributive role in lowering rLCMV/VSVG loads in vivo, attesting to the attenuation profile of the vaccine. Nevertheless, IFNs are not required for the induction of potent vaccine responses. These results provide a better understanding of the immunobiology of rLCMV/VSVG and will contribute to the further development of GP exchange vaccines for combating arenaviral hemorrhagic fevers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available