4.5 Article

Protein geranylgeranylation regulates the balance between Th17 cells and Foxp3+ regulatory T cells

Journal

INTERNATIONAL IMMUNOLOGY
Volume 21, Issue 6, Pages 679-689

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/intimm/dxp037

Keywords

SOCS3; statin; T cells; tolerance

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japanese Government
  2. Global Center for Education and Research in Immune System Regulation and Treatment, MEXT, Japan
  3. Grants-in-Aid for Scientific Research [21390255] Funding Source: KAKEN

Ask authors/readers for more resources

Recent studies have suggested that statins, the inhibitors for 3-hydroxy-3-methyglutaryl (HMG)-CoA reductase in the mevalonate pathway, exhibit anti-inflammatory effects. However, the immune modulatory effects of statins on the differentiation of CD4(+) T cells and their underlying mechanisms are still largely unknown. To address these issues, we examined the effect of simvastatin and inhibitors for protein farnesylation and geranylgeranylation on the differentiation of IL-17-producing T cells (T(h)17 cells) and Foxp3(+) CD4(+) T cells. Simvastatin inhibited the differentiation of T(h)17 cells through the inhibition of HMG-CoA reductase activity but enhanced the differentiation of Foxp3(+) CD4(+) T cells. Geranylgeranyltransferase I inhibitor, GGTI-298, but not farnesyltransferase inhibitor, FTI-277, mimicked the effects of simvastatin, indicating that the inhibition of protein geranylgeranylation is responsible for the effects. Moreover, Foxp3(+) CD4(+) T cells developed in the presence of transforming growth factor-beta and GGTI-298 functioned as regulatory T cells (Tregs) in in vitro T cell proliferation assay as well as in an autoimmune colitis model. Finally, GGTI-298 induced SOCS3 expression and inhibited IL-6-induced signal transducers and activators of transcription3 phosphorylation in CD4(+) T cells. Taken together, these results indicate that protein geranylgeranylation enhances the differentiation of T(h)17 cells and inhibits the differentiation of Foxp3(+) Tregs partly via the inhibition of SOCS3 expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available