4.5 Article

Nasal vaccination with troponin reduces troponin specific T-cell responses and improves heart function in myocardial ischemia-reperfusion injury

Journal

INTERNATIONAL IMMUNOLOGY
Volume 21, Issue 7, Pages 817-829

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/intimm/dxp051

Keywords

IL-10; immunotherapy; vaccine

Categories

Funding

  1. National Institutes of Health [AI-43458]

Ask authors/readers for more resources

Myocardial ischemia with subsequent reperfusion (MI/R) can lead to significant myocardial damage. Ischemia initiates inflammation at the blood-microvascular endothelial cell interface and contributes significantly to both acute injury and repair of the damaged tissue. We have found that MI/R injury in mice is associated with a cellular immune response to troponin. Myocardial cells exclusively synthesize troponin and release the troponin into the bloodstream following injury. Mucosally administered proteins induce T cells that secrete anti-inflammatory cytokines such as IL-10 and transforming growth factor beta at the anatomical site where the protein localizes. We found that nasal administration of the three subunits of troponin (C, I and T isoforms), given prior to or 1 h following MI/R, decreased infarct size by 40% measured 24 h later. At 1.5 months following MI/R, there was a 50% reduction in infarct size and improvement in cardiac function as measured by echocardiography. Protection was associated with a reduction of cellular immunity to troponin. Immunohistochemistry demonstrated increased IL-10 and reduced IFN-gamma in the area surrounding the ischemic infarct following nasal troponin. Adoptive transfer of CD4+ T cells to mice from nasally troponin-treated mice 1 h after the MI/R decreased infarct size by 72%, whereas CD4+ T cells from IL-10-/- mice or nasally BSA-treated mice had no effect. Our results demonstrate that IL-10-secreting CD4+ T cells induced by nasal troponin reduce injury following MI/R. Modulation of cardiac inflammation by nasal troponin provides a novel treatment to decrease myocardial damage and enhance recovery after myocardial ischemia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available