4.7 Article

Two phase simulation of nanofluid flow and heat transfer using heatline analysis

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2013.07.006

Keywords

Heatline; Nanofluid; Brownian; Thermophoresis; Natural convection; CVFEM

Ask authors/readers for more resources

In this study Control Volume based Finite Element Method is applied to solve the problem of natural convection heat transfer in an enclosure filled with nanofluid. The important effect of Brownian motion and thermophoresis has been included in the model of nanofluid. The inner sinusoidal and outer circular walls are maintained at constant temperatures while the two other walls are thermally insulated. The heat transfer between cold and hot regions of the enclosure cannot be well understood by using isotherm patterns so heatline visualization technique is used to find the direction and intensity of heat transfer in a domain. Effects of thermal Rayleigh number (Ra), buoyancy ratio number (Nr) and Lewis number (Le) on streamline, isotherm, isoconcentration and heatline are examined. The results indicate that the average Nusselt number decreases as buoyancy ratio number increases until it reaches a minimum value and then starts increasing. As Lewis number increases, this minimum value occurs at higher buoyancy ratio number. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available