4.7 Article

Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2012.05.020

Keywords

Radial magnetic field; Nanofluid; Natural convection; Lattice Boltzmann method

Ask authors/readers for more resources

In this study, natural convection in a concentric annulus between a cold outer square and heated inner circular cylinders in presence of static radial magnetic field is investigated numerically using the lattice Boltzmann method. The inner and outer cylinders are maintained at constant uniform temperatures and it is assumed that all walls are insulating the magnetic field. The numerical investigation is carried out for different governing parameters namely: the Hartmann number, nanoparticles volume fraction and Rayleigh number. The effective thermal conductivity and viscosity of nanofluids are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively. Also, the multi-distribution-function (MDF) model is used for simulating the effect of uniform magnetic field. The results reveal that the average Nusselt number is an increasing function of nanoparticle volume fraction as well as the Rayleigh number, while it is a decreasing function of the Hartmann number. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available