4.6 Article

Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain

Journal

INTENSIVE CARE MEDICINE
Volume 40, Issue 3, Pages 412-421

Publisher

SPRINGER
DOI: 10.1007/s00134-013-3203-6

Keywords

Brain metabolism; Lactate; Cerebral microdialysis; Traumatic brain injury; Hypertonic

Funding

  1. Swiss National Science Foundation [320030_138191]
  2. European Critical Care Research Network
  3. European Society of Intensive Care Medicine
  4. Gueules Cassees Foundation
  5. Swiss National Science Foundation (SNF) [320030_138191] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO(2)), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO(2), and ICP. Treatment was started on average 33 +/- A 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95 % confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) mu mol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available