4.4 Article Proceedings Paper

Microevolutionary Distribution of Isogenicity in a Self-fertilizing Fish (Kryptolebias marmoratus) in the Florida Keys

Journal

INTEGRATIVE AND COMPARATIVE BIOLOGY
Volume 52, Issue 6, Pages 743-752

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/icb/ics075

Keywords

-

Categories

Funding

  1. NICHD NIH HHS [R13HD070622] Funding Source: Medline

Ask authors/readers for more resources

The mangrove rivulus Kryptolebias marmoratus and a closely related species are the world's only vertebrates that routinely self-fertilize. Such uniqueness presents a model for understanding why this reproductive mode, common in plants and invertebrates, is so rare in vertebrates. A survey of 32 highly polymorphic loci in > 200 specimens of mangrove rivulus from multiple locales in the Florida Keys, USA, revealed extensive population-genetic structure on microspatial and micro-temporal scales. Observed heterozygosities were severely constrained, as expected for a hermaphroditic species with a mixed-mating system and low rates of outcrossing. Despite the pronounced population structure and the implied restrictions on effective gene flow, isogenicity (genetic identity across individuals) within and among local inbred populations was surprisingly low even after factoring out probable de novo mutations. Results indicate that neither frequent bottlenecks nor directional genetic adaptation to local environmental conditions were the primary driving forces impacting multilocus population-genetic architecture in this self-fertilizing vertebrate species. On the other hand, a high diversity of isogenic lineages within relatively small and isolated local populations is consistent with the action of diversifying selection driven by the extreme spatio-temporal environmental variability that is characteristic of mangrove habitats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available