4.6 Article

FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes

Journal

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
Volume 43, Issue 8, Pages 644-653

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2013.04.003

Keywords

BAC-FISH; Insect; Gene mapping; Lepidoptera; Pachytene bivalents

Funding

  1. Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN)
  2. Japan Society for the Promotion of Science (JSPS) [23380030]
  3. Grants-in-Aid for Scientific Research [23380030] Funding Source: KAKEN

Ask authors/readers for more resources

Since the Bombyx mori genome sequence was published, conserved synteny between B. mori and some other lepidopteran species has been revealed by either FISH (fluorescence in situ hybridization) with BAC (bacterial artificial chromosome) probes or linkage analysis. However, no species belonging to the Noctuidae, the largest lepidopteran family which includes serious polyphagous pests, has been analyzed so far with respect to genome-wide conserved synteny and gene order. For that purpose, we selected the noctuid species Helicoverpa armigera and Mamestra brassicae, both with n = 31 chromosomes. Gene-defined fosmid clones from M. brassicae and BAC clones from a closely related species of H. armigera, Heliothis virescens, were used for a FISH analysis on pachytene chromosomes. We recognized all H. armigera chromosomes from specific cross-hybridization signals of 146 BAC probes. With 100 fosmid clones we identified and characterized all 31 bivalents of M. brassicae. Synteny and gene order were well conserved between the two noctuid species. The comparison with the model species B. mori (n = 28) showed the same phenomenon for 25 of the 28 chromosomes. Three chromosomes (#11, #23 and #24) had two counterparts each in H. armigera and M. brassicae. Since n = 31 is the modal chromosome number in Lepidoptera, the noctuid chromosomes probably represent an ancestral genome organization of Lepidoptera. This is the first identification of a full karyotype in Lepidoptera by means of BAC cross-hybridization between species. The technique shows the potential to expand the range of analyzed species efficiently. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available