4.6 Article

Identification and characterization of two arylalkylamine N-acetyltransferases in the yellow fever mosquito, Aedes aegypti

Journal

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
Volume 41, Issue 9, Pages 707-714

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2011.05.002

Keywords

N-acetyltransferase; Arylalkylamine; Dopamine; Serotonin; Tryptamine; Aedes; aaNAT

Funding

  1. National Institutes of Health [AI 19769]

Ask authors/readers for more resources

In this study we provide a molecular and biochemical identification of two arylalkylamine N-acetyltransferases (aaNAT) from Aedes aegypti mosquitoes. N-acetyldopamine, the enzyme product of aaNAT, was detected in Ae. aegypti, indicating the presence of an aaNAT in this mosquito. A BLAST search of the Ae. aegypti genome, using sequence information from an activity-verified Drosophila aaNAT, identified thirteen putative aaNAT sequences sharing 13-48% sequence identity with the Drosophila enzyme. Eight of the thirteen putative aaNAT proteins were expressed using a bacterial expression system. Screening of purified recombinant proteins against 5-hydroxytryptamine, dopamine, methoxytryptamine, norepinephrine, octopamine, tryptamine, and tyramine substrates, established that two of the putative aaNATs are active to the tested arylalkylamines. We therefore named them aaNAT1 and 2, respectively. Analysis of the transcriptional profiles of the two aaNAT genes from Ae. aegypti revealed that aaNAT1 is more abundant in the whole body of larvae and pupae, and aaNAT2 is more abundant in the head of adult mosquitoes. Based on their substrate and transcriptional profiles, together with previous reports from other insects, we suggest that the two aaNATs play diverse roles in Ae. aegypti, with aaNAT1 primarily involved in sclerotization and aaNAT2 mainly in neurotransmitter inactivation. Our data provide a beginning to a more comprehensive understanding of the biochemistry and physiology of aaNATs from the Ae. aegypti and serve as a reference for studying the aaNAT family of proteins from other insect species. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available