4.7 Article

Solution Synthesis of Metal Silicide Nanoparticles

Journal

INORGANIC CHEMISTRY
Volume 54, Issue 3, Pages 707-709

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic502394u

Keywords

-

Funding

  1. National Science Foundation Center for Chemical Innovation on Solar Fuels [CHE-1305124]

Ask authors/readers for more resources

Transition-metal silicides are part of an important family of intermetallic compounds, but the high-temperature reactions that are generally required to synthesize them preclude the formation of colloidal nanoparticles. Here, we show that palladium, copper, and nickel nanoparticles react with monophenylsilane in trioctylamine and squalane at 375 degrees C to form colloidal Pd2Si, Cu3Si, and Ni2Si nanoparticles, respectively. These metal silicide nanoparticles were screened as electrocatalysts for the hydrogen evolution reaction, and Pd2Si and Ni2Si were identified as active catalysts that require overpotentials of -192 and -243 mV, respectively, to produce cathodic current densities of -10 mA cm(-2).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available