4.7 Article

High-Throughput ab Initio Screening for Two-Dimensional Electride Materials

Journal

INORGANIC CHEMISTRY
Volume 53, Issue 19, Pages 10347-10358

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic501362b

Keywords

-

Funding

  1. Element strategy Initiative to Form Core Research Center of the Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Japan Science and Technology Agency ACCEL program

Ask authors/readers for more resources

High-throughput ab initio screening of approximately 34000 materials in the Materials Project was conducted to identify two-dimensional (2D) electride materials, which are composed of cationic layers and anionic electrons confined in a 2D empty space. The screening was based on three indicators: (1) a positive total formal charge per formula unit; (2) layered structures for two-dimensionality; (3) empty spaces between the layer units. Three nitrides, Ca2N, Sr2N, and Ba2N, and the carbide Y2C were identified as 2D electrides, where Ca2N is the only experimentally confirmed 2D electride (Lee, K.; et al. Nature 2013, 494, 336-341). Electron density analysis using ionic radii revealed a smaller number of anionic electrons in Y2C than those in the three nitrides as a result of the partial occupation of the anionic electrons in the d orbitals of Y. In addition, no candidates were identified from the p-block elements, and thus the ab initio screening indicates that the s-block elements (i.e., alkali or alkaline-earth metals) are highly preferable as cation elements. To go beyond the database screening, a tailored modeling was conducted to determine unexplored compounds including the s-block elements that are suitable for 2D electrides. The tailored modeling found that (1) K2Cl, K2Br, Rb2Cl, and Rb2Br dialkali halides are highly plausible candidates, (2) Li2F and Na2Cl dialkali halides are highly challenging candidates, and (3) the Cs2O1-xFx halogen-doped dialkali oxide is a promising candidate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available