4.7 Article

Graphite Oxide/Metal-Organic Framework (MIL-101): Remarkable Performance in the Adsorptive Denitrogenation of Model Fuels

Journal

INORGANIC CHEMISTRY
Volume 52, Issue 24, Pages 14155-14161

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic402012d

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF)
  2. Korea government (MSIP) [2013R1A2A2A01007176]
  3. National Research Foundation of Korea [2013R1A2A2A01007176] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

A highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), was synthesized in the presence of graphite oxide (GO) to produce GO/MIL-101 composites. The porosity of the composites increased remarkably in the presence of a small amount of GO (<0.5% of MIL-101); however, further increases in GO reduced the porosity. GO also accelerated the synthesis of the MIL-101. The composites (GO/MIL-101) were used, for the first time, in liquid-phase adsorptions. The adsorptive removal of nitrogen-containing compounds (NCCs) and sulfur-containing compounds (SCCs) from model fuels demonstrated the potential applications of the composites in adsorptions, and the adsorption capacity was dependent on the surface area and pore volume of the composites. Most importantly, the GO/MIL-101 composite has the highest adsorption capacity for NCCs among reported adsorbents so far, partly because of the increased porosity of the composite. Finally, the results suggest that GO could be used in the synthesis of highly porous MOF composites, and the obtained materials could be used in various adsorptions in both liquid and gas/vapor phase (such as H-2, CH4, and CO2 storage) adsorptions, because of the high porosity and functional GO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available