4.7 Article

Rapid, Large-Scale, Morphology-Controllable Synthesis of YOF:Ln3+ (Ln = Tb, Eu, Tm, Dy, Ho, Sm) Nano-/Microstructures with Multicolor-Tunable Emission Properties

Journal

INORGANIC CHEMISTRY
Volume 52, Issue 22, Pages 12986-12994

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic401501t

Keywords

-

Funding

  1. National Natural Science Foundation of China [NSFC 51332008, 51172227, 21221061, U13012038]
  2. National Basic Research Program of China [2010CB327704, 2014CB643803]
  3. National Natural Science Foundation of Guangdong Province [U13012038]

Ask authors/readers for more resources

YOF:Ln(3+) (Ln = Tb, Eu, Tm, Dy, Ho, Sm) nano-/microstructures with a variety of novel and well-defined morphologies, including nanospheres, nanorod bundles, and microspindles, have been prepared through a convenient modified urea-based homogeneous precipitation (UBHP) technique followed by a heat treatment. The sizes and morphologies of the YOF products could be easily modulated by changing the pH values and fluoride sources. XRD, TG-DTA, FT-IR, SEM, and TEM, as well as photoluminescence (PL) and cathodoluminescence (CL) spectra, were used to characterize the prepared samples. The YOF:Ln(3+) nanospheres show the characteristic f-f transitions of Ln(3+) (Ln = Tb, Eu, Tm, Dy, Ho, Sm) ions and give bright green, red, blue, yellow, blue-green, and yellow-orange emission, respectively, under UV light and low-voltage electron beam excitation. Furthermore, YOF:0.03Tb(3+). phosphors exhibit green luminescence with superior properties in comparison with the commercial phosphor ZnO:Zn to a degree, which is advantageous for improving display quality. Because of the simultaneous luminescence of Ln(3+) in the YOF host, the luminescence colors of YOF:Ln(3+) phosphors can be precisely adjusted by changing the doped Ln(3+) ions and corresponding concentrations, which makes these materials hold great promise for applications in field-emission displays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available