4.7 Article

Variable Magnetic Interactions between S=1/2 Cation Radical Salts of Functionalizable Electron-Rich Dithiolene and Diselenolene Cp2Mo Complexes

Journal

INORGANIC CHEMISTRY
Volume 52, Issue 4, Pages 2162-2173

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic3025606

Keywords

-

Ask authors/readers for more resources

A series of Cp2Mo(dithiolene) and Cp2Mo(diselenolene) complexes containing N-alkyl-1,3-thiazoline-2-thione-4,5-dithiolate ligand (R-thiazdt, R = Me, Et, CH2CH2OH) and N-alkyl-1,3-thiazoline-2-thione-4,5-diselenolate ligand (R-thiazds, R = Me, Et) have been synthesized. These heteroleptic molybdenum complexes have been characterized by electrochemistry, spectroelectrochemistry, and single crystal X-ray diffraction. They act as very good electron donor complexes with a first oxidation potential 200 mV lower than in the prototypical Cp2Mo(dmit) complex and exhibit almost planar MoS2C2 (or MoSe2C2) metallacycles. All five complexes formed charge transfer salts with a weak (TCNQ) and a strong acceptor (TCNQF(4)), affording ten different charge-transfer salts, all with 1:1 stoichiometry. Crystal structure determinations show that the S/Se substitution in the metallacycle systematically affords isostructural salts, while the Cp2Mo(R-thiazdt) complexes with R equals ethyl or CH2CH2OH can adopt different structures, depending on the involvement of the hydroxyl group into intra- or intermolecular hydrogen bonding interactions. Magnetic susceptibility data of the salts are correlated with their structural organization, demonstrating that a face-to-face organization of the Me-thiazdt (or Me-thiazds) ligand favors a strong antiferromagnetic interaction, while the bulkier R = Et or R = CH2CH2OH substituents can completely suppress such intermolecular interactions, with the added contribution of hydrogen bonding to the solid state organization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available