4.7 Article

Combined Experimental-Theoretical Characterization of the Hydrido-Cobaloxime [HCo(dmgH)2(PnBu3)]

Journal

INORGANIC CHEMISTRY
Volume 51, Issue 13, Pages 7087-7093

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic2024204

Keywords

-

Funding

  1. French National Research Agency (ANR) [NiFe-Cat ANR-10-BLAN-711]
  2. FP7 CEA-Eurotalents COFUND Program

Ask authors/readers for more resources

A combined theoretical and experimental approach has been employed to characterize the hydridocobaloxime [HCo(dmgH)(2)(PnBu(3))] compound. This complex was originally investigated by Schrauzer et al. [Schrauzer et al., J. Am. Chem. Soc. 1971, 93,1505] and has since been referred to as a key, stable analogue of the hydride intermediate involved in hydrogen evolution catalyzed by cobaloxime compounds [Artero, V. et al. Angew. Chem., Int. Ed. 2011, SO, 7238-7266]. We employed quantum chemical calculations, using density functional theory and correlated RI-SCS-MP2 methods, to characterize the structural and electronic properties of the compound and observed important differences between the calculated H-1 NMR spectrum and that reported in the original study by Schrauzer and Holland. To calibrate the theoretical model, the stable hydrido tetraamine cobalt(III) complex [HCo(tmen)(2)(OH2)](2+) (tmen = 2,3-dimethyl-butane-2,3-diamine) [Rahman, A. F. M. M. et al. Chem. Commun. 2003, 2748-2749] was subjected to a similar analysis, and, in this case, the calculated results agreed well with those obtained experimentally. As a follow-up to the computational work, the title hydrido-cobaloxime compound was synthesized and recharacterized experimentally, together with the Co(I) derivative, giving results that were in agreement with the theoretical predictions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available