4.7 Article

Efficient Forster Resonance Energy Transfer in 1,2,3-Triazole Linked BODIPY-Zn(II) Meso-tetraphenylporphyrin Donor-Acceptor Arrays

Journal

INORGANIC CHEMISTRY
Volume 51, Issue 24, Pages 13114-13122

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic301170a

Keywords

-

Funding

  1. Rensselaer Polytechnic Institute
  2. Arthur G. Schultz Award

Ask authors/readers for more resources

Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays that contain one (Dyad), three (Tetrad) and four (Pentad) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) donors connected to a Zn-tetraphenylporphyrin acceptor via 1,2,3-triazole linkages. The photophysical properties of the three arrays, along with individual donor and acceptor chromophores, were investigated by UV-vis absorption and emission spectroscopy, fluorescence lifetimes, and density functional theory (DFT) electronic structure modeling. Comparison of the UV-vis absorption spectra and frontier molecular orbitals from DFT calculations of the three arrays with ZnTPP, ZnTTrzIP, and Trzl-BODIPY shows that the electronic structure of the chromophores is essentially unperturbed by the 1,2,3-triazole linkage. Time-dependent DFT (TDDFT) calculations on the Dyad reproduce the absorption spectra in THF and show no evidence of excited state mixing of the donor and acceptor. The BODIPY singlet excited state emission is significantly quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97.5, and 97.2% for the Dyad, Tetrad, and Pentad, respectively. Fluorescence excitation spectra of the three arrays, measured at the porphyrin emission, mirror the absorption profile of both the porphyrin and BODIPY chromophores and are consistent with the Forster resonance energy transfer (FRET) mechanism. Applying Forster theory to the spectroscopic data of the chromophores gives EnT efficiency estimates that are in close agreement with experimental values, suggesting that the through-space mechanism plays a dominant role in the three arrays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available