4.7 Article

Absorption and Fluorescence Spectroscopy of Growing ZnO Quantum Dots: Size and Band Gap Correlation and Evidence of Mobile Trap States

Journal

INORGANIC CHEMISTRY
Volume 50, Issue 19, Pages 9578-9586

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic201327n

Keywords

-

Ask authors/readers for more resources

ZnO nanoparticles constitute a convenient model system for fundamental studies with many possible technical applications in, for example, sensors and the field of catalysis and optoelectronics. A large set of ZnO quantum dots in the size range 2.5-7 nm have been synthesized and analyzed in detail. Time resolved in situ UV-vis absorption measurements were used to monitor the growth of these particles in solution by correlating the optical band gap to particle size given from X-ray diffraction (XRD) measurements. The particles formed were isotropic in shape, but small initial deviations gave indications of a transition from thermodynamic to kinetically controlled growth for particles around 4 nm in diameter. On the basis of this, the behavior and mechanisms for the particle growth are discussed. The fluorescence dependence on particle size was investigated by combining fluorescence and UV-vis measurements on growing particles. This revealed that the positions of the fluorescence trap states are mobile toward the conduction- and valence band. A broadening of the trap states was also found, and a surface dependent mechanism of the trap state shift and broadening is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available