4.7 Article

Dilution-Induced Slow Magnetic Relaxation and Anomalous Hysteresis in Trigonal Prismatic Dysprosium(III) and Uranium(III) Complexes

Journal

INORGANIC CHEMISTRY
Volume 50, Issue 17, Pages 8484-8489

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic201078r

Keywords

-

Funding

  1. NSF [CHE-06170633]
  2. Direct For Mathematical & Physical Scien [1111900] Funding Source: National Science Foundation
  3. Division Of Chemistry [1111900] Funding Source: National Science Foundation

Ask authors/readers for more resources

Magnetically dilute samples of complexes Dy(H(2)BPz(2)(Me2))(3) (1) and U(H(2)BPz(2))(3) (3) were drepared through cocrystallization with diamagnetic Y(H(2)BPz(2)(Me2))(3) (2) and Y(H(2)BPz(2))(3). Alternating current (ac) susceptibility measurements performed on these samples reveal magnetic relaxation behavior drastically different from their concentrated counterparts. For concentrated 1, slow magnetic relaxation is not observed under zero or applied dc fields of several hundred Oersteds. However, a 1:65 (Dy:Y) molar dilution results in a nonzero out-of-phase component to the magnetic susceptibility under zero applied dc field, characteristic of a single-molecule magnet. The highest dilution of 3 (1:90, U:Y) yields a relaxation barrier U-eff = 16 cm(-1), double that of the concentrated sample. These combined results highlight the impact of intermolecular interactions in mononuclear single-molecule magnets possessing a highly anisotropic metal center. Finally, dilution elucidates the previously observed secondary relaxation process for concentrated 3. This process is slowed down drastically upon a 1:1 molar dilution, leading to butterfly magnetic hysteresis at temperatures as high as 3 K. The disappearance of this process for higher dilutions reveals it to be relaxation dictated by short-range intermolecular interactions, and it stands as the first direct example of an intermolecular relaxation process competing with single-molecule-based slow magnetic relaxation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available