4.7 Article

Different ortho and para Electronic Effects on Hydrolysis and Cytotoxicity of Diamino Bis(Phenolato) Salan Ti(IV) Complexes

Journal

INORGANIC CHEMISTRY
Volume 50, Issue 3, Pages 1030-1038

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic101693v

Keywords

-

Funding

  1. European Research Council under the European Community [(FP7/2007-2013)/ERC, 239603]
  2. Israel Science Foundation [124/09]
  3. Israel Cancer Research Fund (ICRF)

Ask authors/readers for more resources

Bis(isopropoxo) Ti(IV) complexes of diamino bis(phenolato) salan ligands were prepared, their hydrolysis in 1:9 water/THF solutions was investigated, and their cytotoxicity toward colon HT-29 and ovarian OVCAR-1 cells was measured. In particular, electronic effects at positions ortho and para to the binding phenolato unit were analyzed. We found that para substituents of different electronic features, including Me, Cl, OMe, and NO2, have very little influence on hydrolysis rate, and all para-substituted ortho-H complexes hydrolyze slowly to give O-bridged clusters with a t(1/2) of 1-2 h for isopropoxo release. Consequently, no clear cytotoxicity pattern is observed as well, where the largest influence of para substituents appears to be of a steric nature. These complexes exhibit IC50 values of 2-18 mu M toward the cells analyzed, with activity which is mostly higher than those of Cp2TiCl2, (bzac)(2)Ti(OiPr)(2) and cisplatin. On the contrary, major electronic effects are observed for substituents at the ortho position, with an influence that exceeds even that of steric hindrance. Ortho-chloro or -bromo substituted compounds possess extremely high hydrolytic stability where no major isopropoxo release as isopropanol occurs for days. In accordance, very high cytotoxicity toward colon and ovarian cells is observed for ortho-Cl and -Br complexes, with IC50 values of 1-8 mu M, where the most cytotoxic complexes are the ortho-Cl-para-Me and ortho-Br-para-Me derivatives. In this series of ortho-substituted complexes, the halogen radius is of lesser influence both on hydrolysis and on cytotoxicity, while OMe substituents do not impose similar effect of hydrolytic stability and cytotoxicity enhancement. Therefore, hydrolytic stability and cytotoxic activity are clearly intertwined, and thus this family of readily available Ti(IV) salan complexes exhibiting both features in an enhanced manner is highly attractive for further exploration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available