4.7 Article

Bonding Characteristics, Thermal Expansibility, and Compressibility of RXO4 (R = Rare Earths, X = P, As) within Monazite and Zircon Structures

Journal

INORGANIC CHEMISTRY
Volume 48, Issue 10, Pages 4542-4548

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic900337j

Keywords

-

Ask authors/readers for more resources

Systematically theoretical research was performed on the monazite- and zircon-structure RXO4 (R = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; X = P, As) series by using the chemical bond theory of dielectric description. The chemical bond properties of R-O and X-O bonds were presented. In the zircon phase, the covalency fractions of X-O bonds increased in the order of V-O < As-O < P-O, which was in accordance with the ionic radii and electronegative trends, and the covalency fractions of R-O bonds varied slightly due to the lanthanide contraction. While in the monazite phase, both R-O and X-O bonds were divided into two groups by their covalency fractions. The contributions from the bond to the lattice energy, linear thermal expansion coefficient (LTEC), and bulk modulus were explored, The X-O bonds with short bond lengths and high chemical valence made greater contributions to the lattice energy and performed nearly rigidly during the deformation. A regular variation of lattice energy, LTEC, and bulk modulus with the ionic radii of the lanthanides was observed in both monazite and zircon phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available