4.7 Article

Modulating the Near-Infrared Luminescence of Neodymium and Ytterbium Complexes with Tridentate Ligands Based on Benzoxazole-Substituted 8-Hydroxyquinolines

Journal

INORGANIC CHEMISTRY
Volume 48, Issue 7, Pages 2908-2918

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic8020468

Keywords

-

Funding

  1. Swiss National Science Foundation [200020_119866/1]
  2. Swiss National Science Foundation (SNF) [200020_119866] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

An improved synthesis of 2-(2'-benzothiazole)- and 2-(2'-benzoxazole)-8-hydroxyquinoline ligands that combine a tridentate N,N,O-chelating unit for metal binding and extended chromophore for light harvesting is developed. The 2-(2'-benzoxazole)-8-hydroxyquinoline ligands form mononuclear nine-coordinate complexes with neodymium, (Nd-(kappa(3)-ligand)(3)], and an eight-coordinate complex with ytterbium, [Yb(kappa(3)-ligand)(2)center dot(kappa(1)-ligand)center dot H2O], as verified by crystallographic characterization of five complexes with four different ligands. The chemical stability of the complexes increases when the ligand contains 5,7-dihalo-8-hydroxyquinoline versus an 8-hydroxyquinoline group. The complexes feature a ligand-centered visible absorption band with a maximum at 508-527 nm and an intensity of (7.5-9.6) x 10(3) M-1 . cm(-1). Upon excitation with UV and visible light within ligand absorption transitions, the complexes display characteristic lanthanide luminescence in the near-infrared at 850-1450 nm with quantum yields and lifetimes in the solid state at room temperature as high as 0.33% and 1.88 mu s, respectively. The lanthanide luminescence in the complexes is enhanced upon halogenation of the 5,7- positions in the 8-hydroxyquinoline group and upon the addition of electron-donating substituents to the benzoxazole ring. Facile modification of chromophore units in 2-(2'-benzoxazole)-8-hydroxyquinoline ligands provides means for controlling the luminescence properties of their lanthanide complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available