4.3 Article

Modulation of virus-induced innate immunity and type 1 diabetes by IL-1 blockade

Journal

INNATE IMMUNITY
Volume 20, Issue 6, Pages 574-584

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1753425913502242

Keywords

Gut bacteria; IL-1 receptor antagonist; inflammation; innate immunity; Kilham rat virus; type 1 diabetes

Funding

  1. JDRF [1-2006-745, 1-2007-584, 5-2008-224, 5-2011-41]

Ask authors/readers for more resources

We used the LEW1.WR1 model of Kilham rat virus (KRV)-induced type 1 diabetes (T1D) to test the hypothesis that blocking IL-1 pathways early in the course of the disease can modulate virus-induced innate immunity and prevent disease progression. Administering KRV plus IL-1 receptor antagonist (Anakinra) for 14d prevented insulitis and T1D. Anakinra reversed the KRV-induced systemic inflammation evidenced by the accumulation of T cells in the spleen and pancreatic lymph nodes on d 5 post-infection. Blocking IL-1 modulated the level of IRF-7 and IL-6 gene expression in the spleen and the p40 subunit of IL-12 and IL-23 in the serum. Anakinra did not interfere with the ability of LEW1.WR1 rats to clear the virus from the spleen, pancreatic lymph nodes or serum. Consistent with these data, normal levels of KRV-specific adaptive immune responses were detected in in the spleen and peripheral blood of the treated animals. Finally, blocking IL-1 pathways reversed the KRV-induced modulation of gut bacterial communities. The data may imply that IL-1 pathways are directly linked with early mechanisms whereby KRV infection leads to islet destruction, raising the hypothesis that blocking IL-1 pathways early in the course of the disease could be a useful therapeutic approach for disease prevention.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available