4.0 Article

Low-level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

Journal

INHALATION TOXICOLOGY
Volume 22, Issue 7, Pages 593-600

Publisher

TAYLOR & FRANCIS INC
DOI: 10.3109/08958371003596587

Keywords

Antigen-presenting cells; dendritic cell; inflammation; macrophage; ozone; pollution; polymorpho-nuclear neutrophil

Categories

Funding

  1. NIEHS [R01ES012706]
  2. US EPA [CR 83346301]

Ask authors/readers for more resources

The effects of low-level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known; however, much less is known about the inflammatory and immunomodulatory effects of low-level ozone in the airways. Techniques such as induced sputum and flow cytometry make it possible to examine airways inflammatory responses and changes in immune cell surface phenotypes following low-level ozone exposure. The purpose of this study was to determine if exposure to 0.08 parts per million ozone for 6.6 h induces inflammation and modifies immune cell surface phenotypes in the airways of healthy adult subjects. Fifteen normal volunteers underwent an established 0.08 part per million ozone exposure protocol to characterize the effect of ozone on airways inflammation and immune cell surface phenotypes. Induced sputum and flow cytometry were used to assess these endpoints 24 h before and 18 h after exposure. The results showed that exposure to 0.08 ppm ozone for 6.6 h induced increased airway neutrophils, monocytes, and dendritic cells and modified the expression of CD14, HLA-DR, CD80, and CD86 on monocytes 18 h following exposure. Exposure to 0.08 parts per million ozone is associated with increased airways inflammation and promotion of antigen-presenting cell phenotypes 18 hours following exposure. These findings need to be replicated in a similar experiment that includes a control air exposure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available