4.6 Article

Microstrip patch array antenna on photonic crystal substrate at terahertz frequency

Journal

INFRARED PHYSICS & TECHNOLOGY
Volume 55, Issue 1, Pages 32-39

Publisher

ELSEVIER
DOI: 10.1016/j.infrared.2011.08.001

Keywords

Patch array antenna; Terahertz spectrum; Gain; Directivity; Radiation efficiency

Ask authors/readers for more resources

Recent advancement in the fabrication and packaging technology has led to the micrometer and nanometer-scale device modeling. This technological development and subsequent reduction in the dimension of devices like modulators, detectors and antennas has brought a thought of increasing the operating frequency of the system to the extent of sub-millimeter wavelength. In the view of the technical breakthrough in the area of fabrication and packaging, we have explored a printed antenna array on the photonic crystal in the terahertz spectrum in this paper. An equivalent circuit model of the antenna has been proposed and a methodology to investigate various electrical parameters is discussed. Tunable parameters of the structure have been explored to optimize the electrical performance of the proposed antenna. The analysis is also compared by using two simulators: (a) CST Microwave Studio based on finite integral technique and (b) Ansoft HFSS based on finite element method. The effect of the photonic crystal as substrate to enhance the gain of this kind of the antenna has also been demonstrated. The gain, directivity, front-to-back ratio (F/B ratio), and the radiation efficiency of the proposed antenna at 600 GHz is 16.88 dBi, 17.19 dBi, 14.77 dB and 89.72%, respectively. Finally, the performance of the antenna has been compared with the reported literature. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available