4.6 Article

Ultrasensitive CO2 laser photoacoustic system

Journal

INFRARED PHYSICS & TECHNOLOGY
Volume 53, Issue 5, Pages 308-314

Publisher

ELSEVIER
DOI: 10.1016/j.infrared.2010.05.001

Keywords

Laser photoacoustic spectroscopy; Photoacoustic signal; Noises; Extracavity arrangement; Minimum detectable concentration; Trace gas measurements

Ask authors/readers for more resources

The present paper describes an extremely sensitive apparatus based upon laser photoacoustic spectroscopy (LPAS) methods which can be used for the detection and measurement of trace gases at very low concentrations (parts per trillion by volume - pptV). Two experimental set-ups were designed and characterized with the photoacoustic (PA) cell in an external configuration: the first one with a low power CO2 laser where the saturation effects are negligible, and a second one with a high power CO2 laser where the saturation effects are important and have to be taken into consideration. In the first case, the minimum detectable concentration was 0.9 ppbV (parts per billion by volume), while in the second case this parameter was improved to 0.29 ppbV. Comparing with the best results published previously in the literature, our minimum detectable concentration is better by a factor of 4.2 in the first case and by a factor of 13.1 in the second case. All measurements were done in nitrogen and ethylene with the 10P(14) line of a continuous wave CO2 laser. This technology can dramatically impact detection in numerous areas. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available