4.7 Article

Hardening effects on strain localization predictions in porous ductile materials using the bifurcation approach

Journal

MECHANICS OF MATERIALS
Volume 91, Issue -, Pages 152-166

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mechmat.2015.07.012

Keywords

GTN model; Ductile damage; Bifurcation criterion; Ductility limits; Hardening effects

Ask authors/readers for more resources

The localization of deformation into planar bands is often considered as the ultimate stage of strain prior to ductile fracture. In this study, ductility limits of metallic materials are predicted using the Gurson-Tvergaard-Needleman (GTN) damage model combined with the bifurcation approach. Both the GTN constitutive equations and the Rice bifurcation criterion are implemented into the finite element (FE) code ABAQUS/Standard within the framework of large plastic strains and a fully three-dimensional formulation. The current contribution focuses on the effect of strain hardening on ductility limit predictions. It is shown that the choice of void nucleation mechanism has an important influence on the sensitivity of the predicted ductility limits to strain hardening. When strain-controlled nucleation is considered, varying the hardening parameters of the fully dense matrix material has no effect on the porosity evolution and, consequently, very small impact on the predicted ductility limits. For stress-controlled nucleation, the porosity evolution is directly affected by the strain hardening characteristics, which induce a significant effect on the predicted ductility limits. This paper also discusses the use of a micromechanics-based calibration for the GTN q-parameters in the case of strain-controlled nucleation, which is also shown to allow accounting for the hardening effects on plastic strain localization. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available